Donate NOW and support Jag-lovers!

IMPORTANT! We have moved! The new site is at www.jag-lovers.com and the new Forums can be found at forums.jag-lovers.com

Please update your links. This old site will be left up for reference, until we can move all the old content over to the new site.

Volunteers wanted! Please help us move information from these pages to the new site, and also join us in providing new, exciting content.



Serving Enthusiasts since 1993
The Jag-lovers Web

Currently with 3,166 members





O2 Sensor Test Information & Resetting the Light
Testing the O2 Sensor Installed
Testing the O2 Sensor on the Bench
Resetting the O2 Warning Light

O2 Sensor Test Information

Rick Kirchoff (not a member)

In response to several requests for more information about oxygen (O2) sensors, perhaps the following information will help.

Comment:These procedures are only for self powered conventional sensors. Some very new cars are using a different style sensor that is powered. Many oxygen sensors are replaced that are good to excellent. Many people don't know how to test them. They routinely last 50,000 or more miles, and if the engine is in good shape, can last the life of the car.

What does the O2 sensor do?

It is the primary measurement device for the fuel control computer in your car to know if the engine is too rich or too lean. The O2 sensor is active anytime it is hot enough, but the computer only uses this information in the closed loop mode. Closed loop is the operating mode where all engine control sensors including the oxygen sensor are used to get best fuel economy, lowest emissions, and good power.

Should the O2 sensor be replaced when the sensor light comes on in your car?

Probably not, but you should test it to make sure it is alive and well. This assumes that the light you see is simply an emissions service reminder light and not a failure light. A reminder light is triggered by a mileage event (20-40,000 miles usually) or something like 2000 key start cycles. EGR dash lights usually fall into the reminder category. Consult your owners manual, auto repair manual, dealer, or repair shop for help on what your light means.

How do I know if my O2 sensor may be bad?

If your car has lost several miles per gallon of fuel economy and the usual tune up steps do not improve it. This is not a pointer to O2 failure, it just brings up the possibility. Vacuum leaks and ignition problems are common fuel economy destroyers. As mentioned by others, the on board computer may also set one of several failure "codes". If the computer has issued a code pertaining to the O2 sensor, the sensor and its wiring should be tested. Usually when the sensor is bad, the engine will show some loss of power, and will not seem to respond quickly.

What will damage my O2 sensor?

Home or professional auto repairs that have used silicone gasket sealer that is not specifically labeled "oxygen sensor safe", "Sensor safe", or something similar, if used in an area that is connected to the crankcase. This includes valve covers, oil pan, or nearly any other gasket or seal that controls engine oil. Leaded fuel will ruin the O2 sensor in a short time. If a car is running rich over a long period, the sensor may become plugged up or even destroyed. Just shorting out the sensor output wire will not usually hurt the sensor. This simply grounds the output voltage to zero. Once the wiring is repaired, the circuit operates normally. Undercoating, antifreeze or oil on the *outside* surface of the sensor can kill it. See how does an oxygen sensor work.

Will testing the O2 sensor hurt it?

Almost always, the answer is no. You must be careful to not *apply* voltage to the sensor, but measuring it's output voltage is not harmful. As noted by other posters, a cheap voltmeter will not be accurate, but will cause no damage. This is *not* true if you try to measure the resistance of the sensor. Resistance measurements send voltage into a circuit and check the amount returning.

How does an O2 sensor work?

An oxygen sensor is a chemical generator. It is constantly making a comparison between the oxygen inside the exhaust manifold and air outside the engine. If this comparison shows little or no oxygen in the exhaust manifold, a voltage is generated. The output of the sensor is usually between 0 and 1.1 volts. All spark combustion engines need the proper air fuel ratio to operate correctly. For gasoline this is 14.7 parts of air to one part of fuel. When the engine has more fuel than needed, all available oxygen is consumed in the cylinder and gasses leaving through the exhaust contain almost no oxygen. This sends out a voltage greater than 0.45 volts. If the engine is running lean, all fuel is burned, and the extra oxygen leaves the cylinder and flows into the exhaust. In this case, the sensor voltage goes lower than 0.45 volts. Usually the output range seen seen is 0.2 to 0.7 volts.

The sensor does not begin to generate its full output until it reaches about 600 degrees F. Prior to this time the sensor is not conductive. It is as if the circuit between the sensor and computer is not complete. The mid point is about 0.45 volts. This is neither rich nor lean. A fully warm O2 sensor *will not spend any time at 0.45 volts*. In many cars, the computer sends out a bias voltage of 0.45 through the O2 sensor wire. If the sensor is not warm, or if the circuit is not complete, the computer picks up a steady 0.45 volts. Since the computer knows this is an "illegal" value, it judges the sensor to not be ready. It remains in open loop operation, and uses all sensors except the O2 to determine fuel delivery. Any time an engine is operated in open loop, it runs somewhat rich and makes more exhaust emissions. This translates into lost power, poor fuel economy and air pollution.

The O2 sensor is constantly in a state of transition between high and low voltage. Manfucturers call this crossing of the 0.45 volt mark O2 cross counts. The higher the number of O2 cross counts, the better the sensor and other parts of the computer control system are working. It is important to remember that the O2 sensor is comparing the amount of oxygen inside and outside the engine. If the outside of the sensor should become blocked, or coated with oil, sound insulation, undercoating or antifreeze (among other things), this comparison is not possible.

How can I test my O2 sensor?

They can be tested both in the car and out. If you have a high impedence volt meter, the procedure is fairly simple. It will help you to have some background on the way the sensor does its job. Read, "How does an O2 sensor work?" first.

Testing O2 Sensor Installed

The engine must first be fully warm. If you have a defective thermostat, this test may not be possible due to a minimum temperature required for closed loop operation. Attach the positive lead of a high impedence DC voltmeter to the oxygen sensor output wire. This wire should remain attached to the computer. You will have to back probe the connection or use a jumper wire to get access. The negative lead should be attached to a good clean ground on the engine block or accessory bracket. Cheap voltmeters will not give accurate results because they load down the circuit and absorb the voltage that they are attempting to measure. A acceptable value is 1,000,000 ohms/volt or more on the DC voltage. Most (if not all) digital voltmeters meet this need. Few (if any) non-powered analog (needle style) voltmeters do. Check the specs for your meter to find out. Set your meter to look for 1 volt DC. Many late model cars use a heated O2 sensor. These have either two or three wires instead of one. Heated sensors will have 12 volts on one lead, ground on the other, and the sensor signal on the third. If you have two or three wires, use a 15 or higher volt scale on the meter until you know which is the sensor output wire.

When you turn the key on, do not start the engine. You should see a change in voltage on the meter in most late model cars. If not, check your connections. Next, check your leads to make sure you won't wrap up any wires in the belts, etc. then start the engine. You should run the engine above 2000 rpm for two minutes to warm the O2 sensor and try to get into closed loop. Closed loop operation is indicated by the sensor showing several cross counts per second. It may help to rev the engine between idle and about 3000 rpm several times. The computer recognizes the sensor as hot and active once there are several cross counts.

You are looking for voltage to go above and below 0.45 volts. If you see less than 0.2 and more than 0.7 volts and the value changes rapidly, you are through, your sensor is good. If not, is it steady high (> 0.45), near 0.45, or steady low (< 0.45). If the voltage is near the middle, you may not be hot yet. Run the engine above 2000 rpm again. If the reading is steady low, add richness by partially closing the choke or adding some propane through the air intake. Be very careful if you work with any extra gasoline, you can easily be burned or have an explosion. If the voltage now rises above 0.7 to 0.9, and you can change it at will by changing the extra fuel, the O2 sensor is usually good.

If the voltage is steady high, create a vacuum leak. Try pulling the PCV valve out of its hose and letting air enter. You can also use the power brake vacuum supply hose. If this drives the voltage to 0.2 to 0.3 or less and you can control it at will by opening and closing the vacuum leak, the sensor is usually good.

If you are not able to make a change either way, stop the engine, unhook the sensor wire from the computer harness, and reattach your voltmeter to the sensor output wire. Repeat the rich and lean steps. If you can't get the sensor voltage to change, and you have a good sensor and ground connection, try heating it once more. Repeat the rich and lean steps. If still no voltage or fixed voltage, you have a bad sensor.

If you are not getting a voltage and the car has been running rich lately, the sensor may be carbon fouled. It is sometimes possible to clean a sensor in the car. Do this by unplugging the sensor harness, warming up the engine, and creating a lean condition at about 2000 rpm for 1 or 2 minutes. Create a big enough vacuum leak so that the engine begins to slow down. The extra heat will clean it off if possible. If not, it was dead anyway, no loss. In either case, fix the cause of the rich mixture and retest. If you don't, the new sensor will fail.

Testing O2 Sensors on the Workbench

Use a high impedence DC voltmeter as above. Clamp the sensor in a vise, or use a plier or vise-grip to hold it. Clamp your negative voltmeter lead to the case, and the positive to the output wire. Use a propane torch set to high and the inner blue flame tip to heat the fluted or perforated area of the sensor. You should see a DC voltage of at least 0.6 within 20 seconds. If not, most likely cause is open circuit internally or lead fouling. If OK so far, remove from flame. You should see a drop to under 0.1 volt within 4 seconds. If not, then the sensor is likely silicone fouled. If still OK, heat for two full minutes and watch for drops in voltage. Sometimes, the internal connections will open up under heat. This is the same as a loose wire and is a failure. If the sensor is OK at this point, and will switch from high to low quickly as you move the flame, the sensor is good. Bear in mind that good or bad is relative, with port fuel injection needing faster information than carbureted systems.

ANY O2 sensor that will generate 0.9 volts or more when heated, show 0.1 volts or less within one second of flame removal, AND pass the two minute heat test is good regardless of age. When replacing a sensor, don't miss the opportunity to use the test above on the replacement. This will calibrate your evaluation skills and save you money in the future. There is almost always no benefit in replacing an oxygen sensor that will pass the test in the first line of this paragraph.


Resetting the O2 Warning Light

Randy Wilson

First off, this reset has nothing to do with the O2 sensor itself. It is merely a maintenance "reminder" light, required by our dear government, telling you it's time to do the x0,000 mile service. It's driven by the speedo, and turns on a light on the dash after a cetain mileage has passed. In the case of Jag, the light says Ox sensor. Other brands had the light labeled "EGR" or "Service" or ...

The early cars with mechanical speedo had a Smiths unit in the middle of the speedo cable. It's a white box mounted in the engine bay at the bulkhead. This unit has an odometer looking counter that shows the percentage of mileage that has passed. It is reset by turning the recessed knob on the side until the counter shows 0000. The knob has two holes in it to turn it. Smiths makes (made?) a little key that fit. I have sucessfully reset them with a set of small circlip pliers, though this is a pain.

The later cars with electronic speedos use a different system. This is one of my favorite examples of British parts bin engineering. The box, as you mentioned is mounted in the boot on the forward bulkhead. This box is black, and has a push button to reset it. That's it. Push the white button (it is recessed behind a guard), and kerchunk, it's reset for another 30K miles. What makes this such a favorite of mine is the box. It's a VDO piece that, like the Smiths, is designed to go inline with the speedo cable. Jaguar, unlike most everyone else, did not go the all electronic route when they converted to the electronic speedo. They made a interface that takes the signal from the pulse generator, and drives a stepper motor attached to this mechanical counter.

Hey, it works... :>

Please show your support for Jag-lovers by purchasing a set of our Car Stickers and don't forget to tell your friends about them! See our unique scanned collection of Brochures and other memorabilia
from the 1930s onwards! Currently over 260 entries...

 

Please help support the move to the new site, and DONATE what you can.
A big Thank You to those who have donated already!

 


       
       
       
       

Go to our Homepage
Improve your Jag-lovers experience with the Mozilla FireFox Browser!

  View the latest posts from our Forums via an RSS Feed!

©Jag-loversTM Ltd / JagWEBTM 1993 - 2024
All rights reserved. Jag-lovers is supported by JagWEBTM
For Terms of Use and General Rules see our Disclaimer
Use of the Jag-lovers logo or trademark name on sites other than Jag-lovers itself in a manner implying endorsement of commercial activities whatsoever is prohibited. Sections of this Web Site may publish members and visitors comments, opinion and photographs/images - Jag-lovers Ltd does not assume or have any responsibility or any liability for members comments or opinions, nor does it claim ownership or copyright of any material that belongs to the original poster including images. The word 'Jaguar' and the leaping cat device, whether used separately or in combination, are registered trademarks and are the property of Jaguar Cars, England. Some images may also be © Jaguar Cars. Mirroring or downloading of this site or the publication of material or any extracts therefrom in original or altered form from these pages onto other sites (including reproduction by any other Jaguar enthusiast sites) without express permission violates Jag-lovers Ltd copyright and is prohibited
Go to our Homepage
Your Browser is: Mozilla/5.0 AppleWebKit/537.36 (KHTML, like Gecko; compatible; ClaudeBot/1.0; +claudebot@anthropic.com), IP Address logged as 3.15.151.214 on 24th Apr 2024 20:46:22